学习方法网
首页 > 学习方法 > 课前预习 > 六年级上册数学第一单元怎么预习 >

六年级上册数学第一单元怎么预习

栏目:课前预习时间:2019-05-31

  想要学好数学做好课前预习很重要,那么你做好预习了吗?以下是逍遥右脑小编分享给大家的六年级上册数学第一单元预习的资料,希望可以帮到你!

  六年级上册数学第一单元预习

  第一单元 分数乘法

  一、分数的乘法

  1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。

  例如:65×5表示求5个65的和是多少? 1/3×5表示求5个1/3的和是多少?

  2、一个数乘分数的意义是求一个数的几分之几是多少。

  例如:1/3×4/7表示求1/3的4/7是多少。

  4×3/8表示求4的3/8是多少选自.学习方法网训练 www.xxffw.com.

  二、分数乘法的计算法则:

  1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

  2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

  3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有11×11=121;

  13×13=169;17×17=289;19×19=361)

  4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

  三、乘法中比较大小的规律

  一个数(0除外)乘大于1的数,积大于这个数。

  一个数(0除外)乘小于1的数(0除外),积小于这个数。

  一个数(0除外)乘1,积等于这个数。

  四、分数混合运算的运算顺序和整数的运算顺序相同。

  整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

  乘法交换律:a × b = b × a

  乘法结合律:(a ×b)×c= a×(b ×c)

  乘法分配律:(a + b)×c = a×c + b×c

  五、分数乘法的解决问题

  (已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少)

  1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。(2)部分和整体的关系:画一条线段图。

  2、找单位“1”:单位“1”在分率句中分率的前面;

  或在“占”、“是”、“比”“相当于”的后面。

  3、写数量关系式的技巧:

  (1)“的”相当于“×”,“占”、“相当于”“是”、“比”是“ = ”

  (2)分率前是“的”字:用单位“1”的量×分率=具体量

  例如:甲数是20,甲数的1/3是多少?

  列式是:20×1/3

  4、看分率前有没有多或少的问题;分率前是“多或少”的关系式:

  (比少):单位“1”的量×(1-分率)=具体量;

  例如:甲数是50,乙数比甲数少1/2,乙数是多少?

  列式是:50×(1-1/2)

  (比多):单位“1”的量×(1+分率)=具体量

  例如:小红有30元钱,小明比小红多3/5,小红有多少钱?

  列式是:50×(1+3/5)

  5、求一个数的几倍是多少:用一个数×几倍;

  6、求一个数的几分之几是多少:用一个数×几分之几。

  7、求几个几分之几是多少:用几分之几×个数

  8、求已知一个部分量是总量的几分之几,求另一个部分量的方法:

  (1)、单位“1”的量×(1-分率)=另一个部分量(建议用)

  (2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量

  例如:教材15页做一做和16页练习第七题(题目中有时候会有这种题的关键字“其中”)

  小学数学的预习方法

  一、读

  读:就是阅读课文,学生要逐字逐句地阅读下一节课的授课内容,弄清中心问题,明确目的要求,力求了解新知识的基本结构(如定义、定理、解题方法等),从总体上作概要性把握。

  二:查

  数学知识连续性强,前面的概念不理解,后面的课程无法学下去。预习的时候发现学过的概念不明白,不清楚的,一定要在课前查阅有关内容搞清楚,力争经过自查不留问题。

  三:思

  学起于思,思源于疑,对所预习的内容要多问几个为什么?从引入方法到概念的内涵和外延,从证题的方法到证题的依据等。预习时应思考:这一节的重点和难点是什么?概念,定理,公式有什么含义?有什么条件?公式如何运用(正用,逆用,变用)。数学课本上有大量的公式,不管有无推导过程,学生预习的时候应当暂放下课本,思考如何推导对照,或在课堂上和教师推导的过程相对照,以便发现自己有无推导错的地方。对于课本的例题,也尝试先做一做,再与课本的解答对照,思考这个问题有没有其他的解法或更简捷的做法(一题多解),如此既是自己在独立地分析问题和解决问题,又是在检查自己的学习情况。一般地,公式推导不下去或推导错误,例题不会做或做错,是由于自己的知识准备不够,要么是学过的忘记了,要么是有些内容自己还没有学过,只要设法补上,自己也就进步了。总之,预习的时候要多思考,要学会质疑.

  四:比

  比的含义,是对照阅读,把该知识与有关知识的相同点,类似和差别找出,并纳入相应的知识链中。如学生在学了等差数列的定义,通项公式和前几项求和公式等,在预习等比数列这块内容时,可类别学习。从两种数列定义可看出,等差数列与等比数列的区别是差(和)转化为比(积),两种数列,可用表格方式对比。在比较中熟悉两种数列的特点,加强结构的记忆。

  五:记

  记指做好预习笔记,做预习笔记有助于提高预习的效果。简短的可以直接在书上圈画,批注,难点、疑点及复杂的内容则要写在笔记本上。对于在预习中,遇到不懂的地方,要结合新旧知识进行纵横分析,思考,若寻求出答案的,可把答案记下来,上课的时候,老师讲到这些地方时,应把自己预习时的理解和老师讲的相对照,看自己有没有理解错的地方。若想不出答案的,也要把问题记下来,待老师讲课时,再听其所以然。

  六:练

  在预习过程中,动手写一写,做一做,概念是否明白,方法是否掌握,可通过练习进行自我检测。数学课本上的练习题都是为巩固所学的知识而出的。预习中可以试做那些习题,之所以说试做,是因为并不强调定要做对,而是用来检验自己预习的效果。预习效果好,一般书后所附的练习是可以做出来的。

  小学数学的学习技巧

  1.上课是理解和掌握基本知识、基本技能和基本方法的关键环节。"学然后知不足",课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。

  2.及时复习是高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由"懂"到"会"。

  3.独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由"会"到"熟"。

  4.解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由"熟"到"活"。

  5.系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由"活"到"悟"。

  6.课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。


相关课前预习

推荐课前预习

重点栏目推荐

学习方法指导 学习效率 学习规律 学习能力 课前预习 课堂效率 复习方法 考试技巧 时间管理 学习计划表 学习心得 学习总结 学习计划
学习方法网 电脑版

© 2017 学习方法网-提供各种学习方法!

顶 ↑ 底 ↓